

December 2013

FPAB30BH60

PFC SPM® 3 Series for Single-Phase Boost PFC

Features

- UL Certified No. E209204 (UL1557)
- 600 V 30 A Single-Phase Boost PFC with Integral Gate Driver and Protection
- Very Low Thermal Resistance Using Al₂O₃ DBC Substrate
- Full-Wave Bridge Rectifier and High-Performance Output Diode
- · Built-in NTC Thermistor for Temperature Monitoring
- Optimized for 20kHz Switching Frequency
- Isolation Rating: 2500 Vrms/min.

Applications

• Single-Phase Boost PFC Converter

Related Source

- AN-9090 PFC SPM 3 Series User's Guide
- AN-9091 Boost PFC Inductor Design Guide

General Description

The FPAB30BH60 is a PFC SPM® 3 module providing a fully-featured, high-performance Boost PFC (Power Factor Correction) input power stage for consumer, medical, and industrial applications. These modules integrate optimized gate drive of the built-in IGBT to minimize EMI and losses. while also providing multiple on-module protection features including under-voltage lockout, over-current shutdown, thermal monitoring, and fault reporting. These modules also feature a full-wave rectifier, and high-performance output diode for additional space savings and mounting convenience

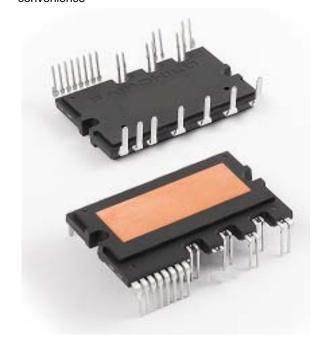


Figure 1. Package Overview

Package Marking & Ordering Information

Device	Device Marking Package		Packing Type	Quantity
FPAB30BH60	FPAB30BH60	SPMIA-027	Rail	10

Integrated Power Functions

• PFC converter for single-phase AC / DC power conversion (please refer to Figure 3)

Integrated Drive, Protection, and System Control Functions

- For IGBTs: gate drive circuit, Over-Current Protection (OCP), control supply circuit Under-Voltage Lock-Out (UVLO) Protection
- Fault signal: corresponding to OC and UV fault
- · Built-in thermistor: temperature monitoring
- Input interface: active-HIGH interface, works with 3.3 / 5 V logic, Schmitt-trigger input

Pin Configuration

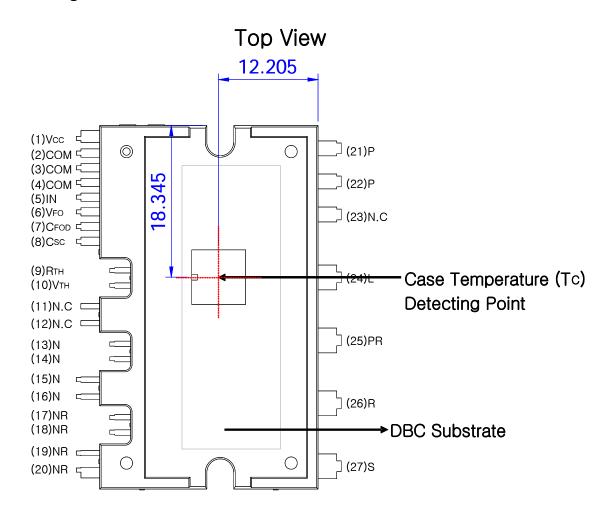


Figure 2. Top View

Notes :

1. For the measurement point of case temperature (T_C) , please refer to Figure 2.

Pin Descriptions

Pin Number	Pin Name	Pin Description
1	V _{CC}	Common Bias Voltage for IC and IGBT Driving
2,3,4	СОМ	Common Supply Ground
5	IN	Signal Input for IGBT
6	V _{FO}	Fault Output
7	C _{FOD}	Capacitor for Fault Output Duration Selection
8	C _{SC}	Capacitor (Low-Pass Filter) for Over-Current Detection
9	R _(TH)	Series Resistor for The Use of Thermistor
10	V _(TH)	Thermistor Bias Voltage
11,12	N.C	No Connection*
13~16	N	IGBT Emitter
17~20	N _R	Negative DC-Link of Rectifier
21,22	Р	Positive Rail of DC-Link
23	N.C	No Connection
24	L	Reactor Connection Pin
25	P _R	Positive DC-Link of Rectifier
26	R	AC Input for R-Phase
27	S	AC Input for S-Phase

^{* 11}th and 12th pins are cut. Please refer to package outline drawings for more detail.

Internal Equivalent Circuit and Input/Output Pins

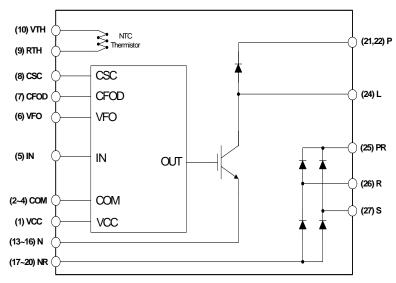


Figure 3. Internal Block Diagram

Absolute Maximum Ratings ($T_J = 25$ °C, unless otherwise specified.)

Converter Part

Symbol	Item	Condition	Rating	Unit
V _i	Supply Voltage	Applied between R - S	264	V_{rms}
V _{i(Surge)}	Supply Voltage (Surge)	Applied between R - S	500	V
V _{PN}	Output Voltage	Applied between P - N	450	V
V _{PN(Surge)}	Output Voltage (Surge)	Applied between P - N	500	V
V _{CES}	Collector - Emitter Voltage		600	V
I _{FSM}	Peak Forward Surge Current	Single Half Sine-Wave	250	Α
l _i	Input Current (100% Load)	T _C < 95°C, V _i = 220 V, V _{PN} = 390 V, V _{PWM} = 20 kHz	25	Α
I _{i(125%)} Input Current (125% Load)		T_C < 95°C, V_i = 220 V, V_{PN} = 390 V, V_{PWM} = 20 kHz, 1 Minite Non-Repetitive	30	А
P _C	P_C Collector Dissipation $T_C = 25^{\circ}C$		169	W
TJ	Operating Junction Temperature		-20 ~ 150	°C

Notes:

Control Part

Symbol	Item	Condition	Rating	Unit
V _{CC}	Control Supply Voltage	Applied between V _{CC} - COM	20	V
V _{IN}	Input Signal Voltage	Applied between IN - COM	-0.3 ~ V _{CC} +0.3	V
V _{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	-0.3 ~ V _{CC} +0.3	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} Pin	5	mA
V _{SC}	Current Sensing Input Voltage	Applied between C _{SC} - COM	-0.3 ~ V _{CC} +0.3	V

Total System

Symbol	Item Condition		Rating	Unit
T _C	Module Case Operating Temperature		-20 ~ 100	°C
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, AC 1 Minute, Connect Pins to Heat Sink Plate	2500	V _{rms}

Thermal Resistance

Symbol	Item	Condition	Min.	Тур.	Max.	Unit
$R_{\theta(j-c)Q}$	Junction to Case Thermal Resistance	IGBT	-	-	0.74	°C/W
$R_{\theta(j-c)F}$		FRD	-	-	1.44	°C/W
$R_{\theta(j-c)R}$		Rectifier (per 1 / 4 module)	-	-	2.07	°C/W

Notes:

2. For the measurement point of case temperature($T_{\mbox{\scriptsize C}}$), please refer to Figure 2.

The maximum junction temperature rating of the power chips integrated within the PFC SPM® product is 150 °C(@T_C \leq 100°C). However, to insure safe operation of the PFC SPM product, the average junction temperature should be limited to $T_{J(ave)} \leq 125$ °C (@T_C \leq 100°C)

Electrical Characteristics (T_J = 25°C, Unless Otherwise Specified.)

Converter Part

Symbol	Item	Condition	Min.	Тур.	Max.	Unit
V _{CE(SAT)}	IGBT Saturation Voltage	$V_{CC} = 15 \text{ V}, V_{IN} = 5 \text{ V}, I_{C} = 30 \text{ A}$	-	2.0	2.8	V
V _{FF}	FRD Forward Voltage	I _F = 30 A	-	1.8	2.5	V
V _{FR}	Rectifier Forward Voltage	I _F = 30 A	-	1.2	1.5	V
t _{ON}	Switching Times	$V_{PN} = 400 \text{ V}, V_{CC} = 15 \text{V}, I_{C} = 30 \text{ A}$	-	650	-	ns
t _{C(ON)}		$V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$, Inductive Load	-	400	-	ns
t _{OFF}		(Note 3)	-	620	-	ns
t _{C(OFF)}			-	200	-	ns
t _{rr}			-	60	-	ns
I _{rr}			-	3.5	-	Α
I _{CES}	Collector - Emitter Leakage Current	V _{CE} = V _{CES}	-	-	250	μА

Notes

^{3.} toN and toFF include the propagation delay time of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.

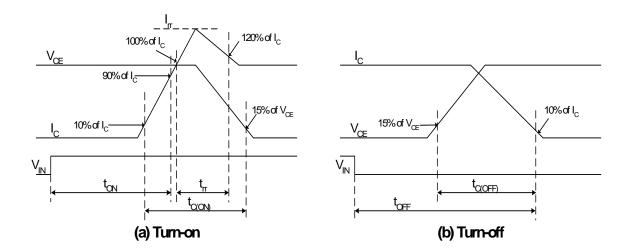


Figure 4. Switching Time Definition

Control Part

Symbol	Item	Condition	Min.	Тур.	Max.	Unit
I _{QCCL}	Quiescent V _{CC} Supply Current	V _{CC} = 15 V, IN = 0 V V _{CC} - COM	-	-	26	mA
V _{FOH}	Fault Output Voltage	$V_{SC} = 0 \text{ V}, V_{FO} \text{ Circuit: } 4.7 \text{ k}\Omega \text{ to 5 V Pull-up}$	4.5	-	-	V
V _{FOL}		V_{SC} = 1 V, V_{FO} Circuit: 4.7 k Ω to 5 V Pull-up	-	-	0.8	V
V _{SC(ref)}	Over-Current Trip Level	V _{CC} = 15 V		0.5	0.55	V
UV _{CCD}	Supply Circuit Under-Voltage	Detection Level	10.7	11.9	13.0	V
UV _{CCR}	Protection	Reset Level	11.2	12.4	13.2	V
t _{FOD}	Fault-Out Pulse Width	C _{FOD} = 33 nF (Note 3)	1.4	1.8	2.0	ms
$V_{IN(ON)}$	ON Threshold Voltage	Applied between IN - COM	2.8	-	-	V
V _{IN(OFF)}	OFF Threshold Voltage			-	0.8	V
R _{TH}	Resistance of Thermistor	at T _{TH} = 25°C (Note 4, Figure 5)	-	50	-	kΩ
		at T _{TH} = 100°C (Note 4, Figure 5)	-	2.99	-	kΩ

Notes:

3. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation: $C_{FOD} = 18.3 \times 10^{-6} \times t_{FOD}[F]$

 $4.\ T_{TH}\ \text{is the temperature of know case temperature}(T_{C}), please\ \text{make the experiment considering your application}.$

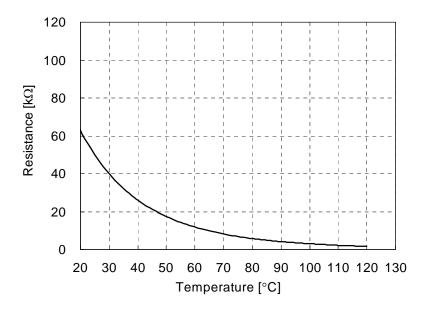


Figure 5. R-T Curve of the Built-In Thermistor

Recommended Operating Condition

Symbol	Item	Condition	Min.	Тур.	Max.	Unit
V _i	Input Supply Voltage	Applied between R - S	187	220	253	$V_{\rm rms}$
V _{PN}	Output Voltage	Applied between P - N	-	380	400	V
V _{CC}	Control Supply Voltage	Applied between V _{CC(L)} - COM	13.5	15.0	16.5	V
dV _{CC} /dt	Control Supply Variation		-1	-	1	V/μs
f _{PWM}	PWM Input Frequency	T _J ≤ 150°C	-	20	-	kHz
l _i	Allowable Input Current	T_C < 90°C, V_i = 220 V, V_{PN} = 380 V V_{PWM} = 20 kHz	-	-	30	A _{peak}

Mechanical Characteristics and Ratings

Item	Condition		Min.	Тур.	Max.	Unit
Mounting Torque	Mounting Screw: M3	Recommended 0.62 N•m	0.51	0.62	0.72	N•m
Device Flatness	See Figure 6		0	-	+120	μm
Weight			-	15.00	-	g

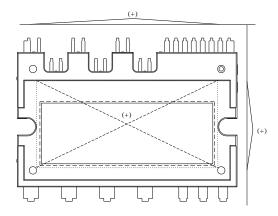
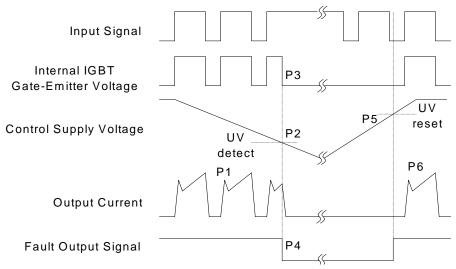
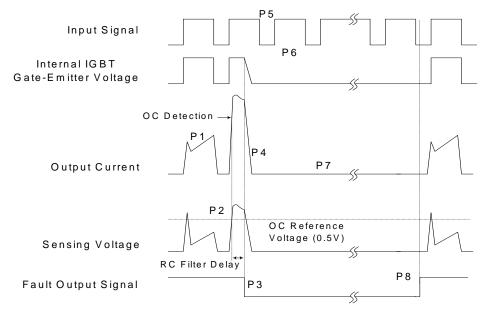



Figure 6. Flatness Measurement Position

Time Charts of Protective Function



P1: Normal operation: IGBT ON and conducting current

P2 : Under-voltage detection P3 : IGBT gate interrupt P4 : Fault signal generation P5 : Under-voltage reset

P6: Normal operation: IGBT ON and conducting current

Figure 7. Under-Voltage Protection

P1: Normal operation: IGBT ON and conducting current

P2 : Over current detection

P3: IGBT gate interrupt / fault signal generation

P4: IGBT is slowly turned off

P5 : IGBT OFF signal

P6 : IGBT ON signa: but IGBT cannot be turned on during the fault output activation

P7: IGBT OFF state

P8 : Fault output reset and normal operation start

Figure 8. Over-Current Protection

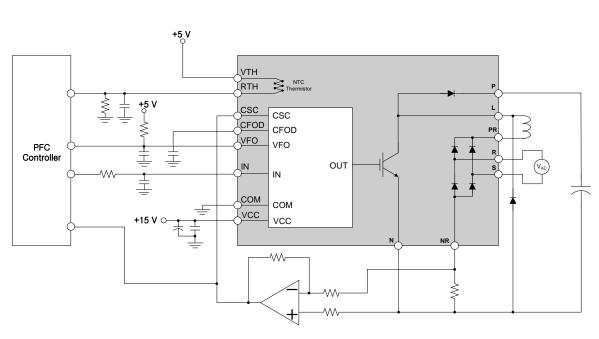
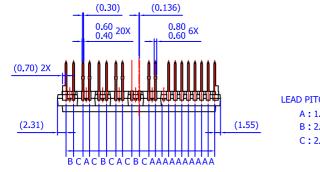
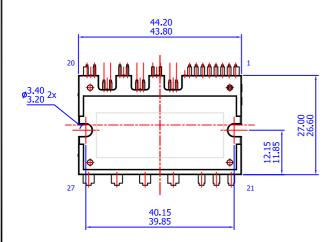
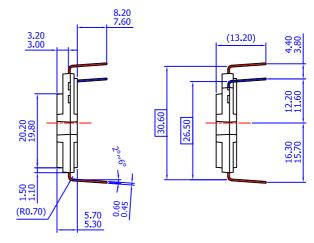
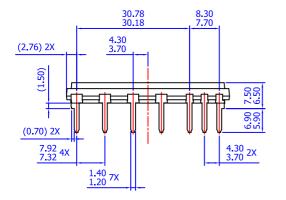
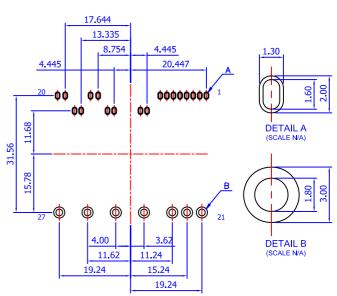



Figure 9. Application Example


Notes:


- 5. Each capacitors should be located as close to PFC SPM® product pins as possible. 6. It's recommended that anti-parallel diode should be connected with IGBT.




LEAD PITCH (TOLERANCE: ±0.30)

A: 1.778 B: 2.050 C: 2.531

NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD
- B) ALL DIMENSIONS ARE IN MILLIMETERS
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
- D) () IS REFERENCE
- E) [] IS ASS'Y QUALITY
- F) DRAWING FILENAME: MOD27BEREV3
- G) FAIRCHILD SEMICONDUCTOR

LAND PATTERN RECOMMENDATIONS

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda[®] Global Power Resource SM

AX-CAP®* GreenBridge™
BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™
MicroPak™
MicroPak2™
Fairchild® MillerDrive™
MotionMax™
Fairchild Semiconductor®

Farchild Semiconductor

FACT Quiet Series™
FACT®

FastvCore™
FETBench™
FPS™

MotionGrid®
MTI®
MTX®
MVN®
FETBench™
MVN®
FPS™

OptoHiT™
OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™ OFFT®

QS™ Quiet Series™ RapidConfigure™

T TM

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM GENERAL®'
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

SerDes"
UHC[®]
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XS™
XS™

仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms	inition of ferms					
Datasheet Identification		Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

FPAB30BH60